Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mehmet Akkurt, ${ }^{\text {a }}$ Sema
Öztürk, ${ }^{\text {a }}$ Tevfik Rıza Kök ${ }^{\text {b }}$ and Frank W. Heinemann ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and ${ }^{\text {c Institut für Anorganische }}$ Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 1, D-91058 Erlangen, Germany

Correspondence e-mail: ozturk@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.046$
$w R$ factor $=0.073$
Data-to-parameter ratio $=19.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(2,2-Dimethyl-1,3,2-dithiagermetan-4-ylidene)malononitrile

The title compound, $\left[\mathrm{Ge}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)\right]$, crystallizes in the space group Pnma, with two half-molecules in the asymmetric unit. The C atoms of the two methyl groups lie on the same mirror plane as the Ge atom and the $-\mathrm{C}=\mathrm{C}$ - group. The S atoms and nitrile groups are each symmetry-related across the mirror plane. The structure is stabilized by intermolecular $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen interactions.

Comment

The title compound, (I), is another example of our newly synthesized Ge complexes (Akkurt et al., 2003; Öztürk et al., 2003). A view of (I) showing the atom-labelling scheme is shown in Fig. 1 and selected geometric parameters are given in Table 1.

(I)

The central Ge atom in the structure of (I) is coordinated by two S and two C atoms, with the $\mathrm{Ge}-\mathrm{S}$ and $\mathrm{Ge}-\mathrm{C}$ distances in agreement with the literature values (Akkurt et al., 2003; Öztürk et al., 2003).

There are two independent molecules, A and B, of similar conformation; half of each molecule is in the asymmetric unit of (I). The two methyl groups are not related by mirror symmetry, but the C atoms lie on the same mirror plane as the Ge atom and the $-\mathrm{C}=\mathrm{C}$ - group. The S atoms and nitrile groups are each symmetry-related across the mirror plane.

The dithiagermetane rings are nearly planar, with maximum deviations of 0.156 (4) and 0.140 (4) \AA for atom C3 in molecules A and B, respectively ($P A R S T$; Nardelli, 1995). The dihedral angle between the weighted least-squares planes of

Figure 1
A view of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Received 20 February 2004
Accepted 2 March 2004
Online 13 March 2004

A view, along the c axis, of the packing and hydrogen bonding (dashed lines) in (I).
the dithiagermetane rings of molecules A and B is 13.19 (3) ${ }^{\circ}$.
The $\mathrm{C}-\mathrm{Ge}-\mathrm{C}$ and $\mathrm{S}-\mathrm{Ge}-\mathrm{S}$ angles are 123.1 (3) and $78.82(3)^{\circ}$, respectively, in molecule A, and 124.3 (3) and 78.75 (3) ${ }^{\circ}$, respectively, in molecule B. The $\mathrm{C}-\mathrm{Ge}-\mathrm{S}$ angles are in the range $109.26(12)-113.90(16)^{\circ}$ in molecule A and 109.96 (16)-112.39 (11) ${ }^{\circ}$ in molecule B.

The structure of (I) is stabilized by two intermolecular C$\mathrm{H} \cdots \mathrm{N}$ interactions, as detailed in Table 2 (Fig. 2).

Experimental

The title compound was prepared according to the method described by Akkurt et al. (2003). Analysis calculated for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{GeN}_{2} \mathrm{~S}_{2}$: C 29.67, H 2.49, N 11.53, S 26.40\%; found: C 29.71, H 2.51, N, 11.60, S 26.57\%; m.p.: 553 K ; IR $\left(\nu, \mathrm{cm}^{-1}\right): 2210(\mathrm{C}-\mathrm{N}), 640(\mathrm{C}-\mathrm{S}), 405(\mathrm{Ge}-\mathrm{S})$; ${ }^{1} \mathrm{H}$ NMR (δ, p.p.m.): 2.48; ${ }^{13} \mathrm{C}$ NMR (δ, p.p.m.): $13.46\left(\mathrm{CH}_{3}\right), 182.4$ $(\mathrm{C}=\mathrm{C}), 114.42(\mathrm{CN})$.

Crystal data

$\left[\mathrm{Ge}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)\right]$
$M_{r}=242.88$
Orthorhombic, Pnma
$a=25.1259$ (19) \AA
$b=9.9284$ (8) \AA
$c=7.5207$ (4) \AA
$V=1876.1(2) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
Cell parameters from 116 reflections
$\theta=6.0-20.0^{\circ}$
$\mu=3.65 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.18 \times 0.08 \times 0.07 \mathrm{~mm}$
$D_{x}=1.720 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius KappaCCD area-detector	2452 independent reflections
\quad diffractometer	1413 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.074$
Absorption correction: multi-scan	$\theta_{\max }=28.5^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 2002)	$h=-33 \rightarrow 33$
$T_{\text {min }}=0.560, T_{\text {max }}=0.784$	$k=-13 \rightarrow 13$
25208 measured reflections	$l=-9 \rightarrow 9$
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0252 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$	$+0.922 P]$
$w R\left(F^{2}\right)=0.073$	where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$S=1.05$	$(\Delta / \sigma)_{\max }<0.001$
2452 reflections	$\Delta \rho_{\max }=0.35$ e \AA^{-3}
123 parameters	$\Delta \rho_{\min }=-0.74 \mathrm{e}^{-3}$
H-atom parameters constrained	

Table 1
Selected geometric parameters ($\mathrm{A}^{\circ}{ }^{\circ}$).

$\mathrm{Ge} 1 A-\mathrm{S} 1 A$	$2.2871(9)$	$\mathrm{Ge} 1 B-\mathrm{C} 2 B$	$1.933(6)$
$\mathrm{Ge} 1 A-\mathrm{C} 1 A$	$1.934(6)$	$\mathrm{S} 1 A-\mathrm{C} 3 A$	$1.736(2)$
$\mathrm{Ge} 1 A-\mathrm{C} 2 A$	$1.929(5)$	$\mathrm{S} 1 B-\mathrm{C} 3 B$	$1.731(2)$
$\mathrm{Ge} 1 B-\mathrm{S} 1 B$	$2.2846(9)$	$\mathrm{N} 1 A-\mathrm{C} 5 A$	$1.144(5)$
$\mathrm{Ge} 1 B-\mathrm{C} 1 B$	$1.905(5)$	$\mathrm{N} 1 B-\mathrm{C} 5 B$	$1.139(5)$
$\mathrm{S} 1 A-\mathrm{Ge} 1 A-\mathrm{C} 1 A$	$113.90(16)$	$\mathrm{Ge} 1 A-\mathrm{S} 1 A-\mathrm{C} 3 A$	$83.44(12)$
$\mathrm{S} 1 A-\mathrm{Ge} 1 A-\mathrm{C} 2 A$	$109.26(12)$	$\mathrm{Ge} 1 B-\mathrm{S} 1 B-\mathrm{C} 3 B$	$83.45(12)$
$\mathrm{C} 1 A-\mathrm{Ge} 1 A-\mathrm{C} 2 A$	$123.1(3)$	$\mathrm{S} 1 A-\mathrm{C} 3 A-\mathrm{C} 4 A$	$123.20(12)$
$\mathrm{C} 1 B-\mathrm{Ge} 1 B-\mathrm{C} 2 B$	$124.3(3)$	$\mathrm{N} 1 A-\mathrm{C} 5 A-\mathrm{C} 4 A$	$179.3(4)$
$\mathrm{S} 1 B-\mathrm{Ge} 1 B-\mathrm{C} 1 B$	$112.39(11)$	$\mathrm{S} 1 B-\mathrm{C} 3 B-\mathrm{C} 4 B$	$123.11(12)$
$\mathrm{S} 1 B-\mathrm{Ge} 1 B-\mathrm{C} 2 B$	$109.96(16)$	$\mathrm{N} 1 B-\mathrm{C} 5 B-\mathrm{C} 4 B$	$178.8(4)$

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 A-\mathrm{H} 2 \cdots \mathrm{~N} 1 B^{\mathrm{i}}$	0.96	2.61	$3.182(5)$	119
$\mathrm{C} 2 B-\mathrm{H} 11 \cdots \mathrm{~N} 1 A^{\mathrm{ii}}$	0.96	2.62	$3.194(5)$	119

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}+z$; (ii) $-x, \frac{1}{2}+y, 1-z$.

All H atoms were positioned geometrically in their ideal positions $(\mathrm{C}-\mathrm{H}=0.96 \AA$) and refined using a riding model, with fixed individual displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: COLLECT (Nonius, 1999); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: EVALCCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Akkurt, M., Öztürk, S., Kök, T. R. \& Fun, H.-K. (2003). Acta Cryst. E59, m664m665.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Öztürk, S., Akkurt, M., Kök, T. R. \& Fun, H.-K. (2003). Acta Cryst. E59, m1018-m1019.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.

