Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Mehmet Akkurt,^a Sema Öztürk,^{a*} Tevfik Rıza Kök^b and Frank W. Heinemann^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Chemistry, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^cInstitut für Anorganische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 1, D-91058 Erlangen, Germany

Correspondence e-mail: ozturk@erciyes.edu.tr

Key indicators

Single-crystal X-ray study T = 294 KMean $\sigma(\text{C-C}) = 0.005 \text{ Å}$ R factor = 0.046 wR factor = 0.073Data-to-parameter ratio = 19.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-(2,2-Dimethyl-1,3,2-dithiagermetan-4-ylidene)-malononitrile

The title compound, $[Ge(CH_3)_2(C_4N_2S_2)]$, crystallizes in the space group *Pnma*, with two half-molecules in the asymmetric unit. The C atoms of the two methyl groups lie on the same mirror plane as the Ge atom and the -C—C- group. The S atoms and nitrile groups are each symmetry-related across the mirror plane. The structure is stabilized by intermolecular C— $H\cdots N$ hydrogen interactions.

Received 20 February 2004 Accepted 2 March 2004 Online 13 March 2004

Comment

The title compound, (I), is another example of our newly synthesized Ge complexes (Akkurt *et al.*, 2003; Öztürk *et al.*, 2003). A view of (I) showing the atom-labelling scheme is shown in Fig. 1 and selected geometric parameters are given in Table 1.

The central Ge atom in the structure of (I) is coordinated by two S and two C atoms, with the Ge-S and Ge-C distances in agreement with the literature values (Akkurt *et al.*, 2003; Öztürk *et al.*, 2003).

There are two independent molecules, A and B, of similar conformation; half of each molecule is in the asymmetric unit of (I). The two methyl groups are not related by mirror symmetry, but the C atoms lie on the same mirror plane as the Ge atom and the -C=C- group. The S atoms and nitrile groups are each symmetry-related across the mirror plane.

The dithiagermetane rings are nearly planar, with maximum deviations of 0.156 (4) and 0.140 (4) Å for atom C3 in molecules A and B, respectively (PARST; Nardelli, 1995). The dihedral angle between the weighted least-squares planes of

Figure 1A view of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

A view, along the c axis, of the packing and hydrogen bonding (dashed lines) in (I).

the dithiagermetane rings of molecules A and B is $13.19 (3)^{\circ}$.

The C-Ge-C and S-Ge-S angles are 123.1 (3) and 78.82 (3)°, respectively, in molecule A, and 124.3 (3) and 78.75 (3)°, respectively, in molecule B. The C-Ge-S angles are in the range 109.26 (12)–113.90 (16)° in molecule A and 109.96 (16)–112.39 (11)° in molecule B.

The structure of (I) is stabilized by two intermolecular $C-H \cdot \cdot \cdot N$ interactions, as detailed in Table 2 (Fig. 2).

Experimental

The title compound was prepared according to the method described by Akkurt *et al.* (2003). Analysis calculated for $C_6H_6GeN_2S_2$: C 29.67, H 2.49, N 11.53, S 26.40%; found: C 29.71, H 2.51, N, 11.60, S 26.57%; m.p.: 553 K; IR (ν , cm⁻¹): 2210 (C-N), 640 (C-S), 405 (Ge-S); 1H NMR (δ , p.p.m.): 2.48; ^{13}C NMR (δ , p.p.m.): 13.46 (CH₃), 182.4 (C=C), 114.42 (CN).

Crystal data

C. your auth	
$[Ge(CH_3)_2(C_4N_2S_2)]$	Mo $K\alpha$ radiation
$M_r = 242.88$	Cell parameters from 116
Orthorhombic, Pnma	reflections
a = 25.1259 (19) Å	$\theta = 6.0 - 20.0^{\circ}$
b = 9.9284 (8) Å	$\mu = 3.65 \text{ mm}^{-1}$
c = 7.5207 (4) Å	T = 294 (2) K
$V = 1876.1 (2) \text{ Å}^3$	Block, colourless
Z = 8	$0.18 \times 0.08 \times 0.07 \text{ mm}$
$D_x = 1.720 \text{ Mg m}^{-3}$	

Data collection

Nonius KappaCCD area-detector	2452 independent reflections
diffractometer	1413 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.074$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.5^{\circ}$
(SADABS; Sheldrick, 2002)	$h = -33 \rightarrow 33$
$T_{\min} = 0.560, T_{\max} = 0.784$	$k = -13 \rightarrow 13$
25 208 measured reflections	$l = -9 \rightarrow 9$
Pafinamant	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0252P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.046$	+ 0.922P]
$wR(F^2) = 0.073$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
2452 reflections	$\Delta \rho_{\text{max}} = 0.35 \text{ e Å}^{-3}$
123 parameters	$\Delta \rho_{\min} = -0.74 \text{ e Å}^{-3}$
H-atom parameters constrained	

Table 1Selected geometric parameters (Å, °).

Ge1A-S1A	2.2871 (9)	Ge1B-C2B	1.933 (6)
Ge1A - C1A	1.934 (6)	S1A - C3A	1.736 (2)
Ge1A - C2A	1.929 (5)	S1B-C3B	1.731(2)
Ge1B-S1B	2.2846 (9)	N1A-C5A	1.144 (5)
Ge1B-C1B	1.905 (5)	N1B-C5B	1.139 (5)
S1A - Ge1A - C1A	113.90 (16)	Ge1A - S1A - C3A	83.44 (12)
S1A - Ge1A - C2A	109.26 (12)	Ge1B-S1B-C3B	83.45 (12)
C1A - Ge1A - C2A	123.1 (3)	S1A - C3A - C4A	123.20 (12)
C1B-Ge1B-C2B	124.3 (3)	N1A-C5A-C4A	179.3 (4)
S1B-Ge1B-C1B	112.39 (11)	S1B-C3B-C4B	123.11 (12)
S1B-Ge1B-C2B	109.96 (16)	N1B-C5B-C4B	178.8 (4)

Table 2 Hydrogen-bonding geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} C1A - H2 \cdot \cdot \cdot N1B^{i} \\ C2B - H11 \cdot \cdot \cdot N1A^{ii} \end{array} $	0.96	2.61	3.182 (5)	119
	0.96	2.62	3.194 (5)	119

Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} + z$; (ii) -x, $\frac{1}{2} + y$, 1 - z.

All H atoms were positioned geometrically in their ideal positions (C-H = 0.96 Å) and refined using a riding model, with fixed individual displacement parameters $[U_{iso}(H) = 1.5U_{eq}(C)]$.

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *EVALCCD* (Duisenberg *et al.*, 2003); data reduction: *EVALCCD*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

References

Akkurt, M., Öztürk, S., Kök, T. R. & Fun, H.-K. (2003). Acta Cryst. E59, m664–m665.

Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003).
J. Appl. Cryst. 36, 220–229.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.

Öztürk, S., Akkurt, M., Kök, T. R. & Fun, H.-K. (2003). Acta Cryst. E59, m1018–m1019.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.